How do you integrate int sin^(4) (2x) sin4(2x)?

1 Answer
Jan 29, 2017

intsin^4(2x)dx=3/8x-1/8sin(4x)+1/64sin(8x)+Csin4(2x)dx=38x18sin(4x)+164sin(8x)+C

Explanation:

I=intsin^4(2x)color(red)(dx)I=sin4(2x)dx

A great way to deal with even powers of sine and cosine, assuming a substitution won't work, is to use the cosine double-angle identity.

The form of the cosine double-angle identity involving sine is cos(2theta)=1-2sin^2(theta)cos(2θ)=12sin2(θ). This can be solved for sin^2(theta)sin2(θ) as sin^2(theta)=(1-cos(2theta))/2sin2(θ)=1cos(2θ)2.

Notice that the following are analogous forms:

sin^2(theta)=(1-cos(2theta))/2" "=>" "color(blue)(sin^2(2x)=(1-cos(4x))/2sin2(θ)=1cos(2θ)2 sin2(2x)=1cos(4x)2

Whatever is in the argument of the cosine function must be double that in the sine function. Using the blue identity, we can then rewrite the integrand:

I=int(sin^2(2x))^2dx=int((1-cos(4x))/2)^2dxI=(sin2(2x))2dx=(1cos(4x)2)2dx

From here, expand (1-cos(4x))^2(1cos(4x))2:

I=1/4int(1-2cos(4x)+cos^2(4x))dxI=14(12cos(4x)+cos2(4x))dx

I=1/4intdx-1/2intcos(4x)dx+1/4intcos^2(4x)dxI=14dx12cos(4x)dx+14cos2(4x)dx

The first two integrals are solved fairly easily. The second one can be solved using the chain rule in reverse (with the substitution u=4x=>du=4color(white).dxu=4xdu=4.dx).

I=1/4x-1/8int4cos(4x)dx+1/4intcos^2(4x)dxI=14x184cos(4x)dx+14cos2(4x)dx

I=1/4x-1/8sin(4x)+1/4intcos^2(4x)dxI=14x18sin(4x)+14cos2(4x)dx

To resolve this even power of cosine, use another form of the cosine double-angle identity: cos(2theta)=2cos^2(theta)-1cos(2θ)=2cos2(θ)1. This shows that cos^2(theta)=(1+cos(2theta))/2cos2(θ)=1+cos(2θ)2.

Which is analogous to:

cos^2(theta)=(1+cos(2theta))/2" "=>" "color(green)(cos^2(4x)=(1+cos(8x))/2)cos2(θ)=1+cos(2θ)2 cos2(4x)=1+cos(8x)2

Substituting this in:

I=1/4x-1/8sin(4x)+1/4int(1+cos(8x))/2dxI=14x18sin(4x)+141+cos(8x)2dx

Which can then be split up and integrated as before:

I=1/4x-1/8sin(4x)+1/8intdx+1/8intcos(8x)dxI=14x18sin(4x)+18dx+18cos(8x)dx

I=1/4x-1/8sin(4x)+1/8x+1/64int8cos(8x)dxI=14x18sin(4x)+18x+1648cos(8x)dx

I=3/8x-1/8sin(4x)+1/64sin(8x)+CI=38x18sin(4x)+164sin(8x)+C