How do you integrate int sin^(4) (2x) ∫sin4(2x)?
1 Answer
Explanation:
I=intsin^4(2x)color(red)(dx)I=∫sin4(2x)dx
A great way to deal with even powers of sine and cosine, assuming a substitution won't work, is to use the cosine double-angle identity.
The form of the cosine double-angle identity involving sine is
Notice that the following are analogous forms:
sin^2(theta)=(1-cos(2theta))/2" "=>" "color(blue)(sin^2(2x)=(1-cos(4x))/2sin2(θ)=1−cos(2θ)2 ⇒ sin2(2x)=1−cos(4x)2
Whatever is in the argument of the cosine function must be double that in the sine function. Using the blue identity, we can then rewrite the integrand:
I=int(sin^2(2x))^2dx=int((1-cos(4x))/2)^2dxI=∫(sin2(2x))2dx=∫(1−cos(4x)2)2dx
From here, expand
I=1/4int(1-2cos(4x)+cos^2(4x))dxI=14∫(1−2cos(4x)+cos2(4x))dx
I=1/4intdx-1/2intcos(4x)dx+1/4intcos^2(4x)dxI=14∫dx−12∫cos(4x)dx+14∫cos2(4x)dx
The first two integrals are solved fairly easily. The second one can be solved using the chain rule in reverse (with the substitution
I=1/4x-1/8int4cos(4x)dx+1/4intcos^2(4x)dxI=14x−18∫4cos(4x)dx+14∫cos2(4x)dx
I=1/4x-1/8sin(4x)+1/4intcos^2(4x)dxI=14x−18sin(4x)+14∫cos2(4x)dx
To resolve this even power of cosine, use another form of the cosine double-angle identity:
Which is analogous to:
cos^2(theta)=(1+cos(2theta))/2" "=>" "color(green)(cos^2(4x)=(1+cos(8x))/2)cos2(θ)=1+cos(2θ)2 ⇒ cos2(4x)=1+cos(8x)2
Substituting this in:
I=1/4x-1/8sin(4x)+1/4int(1+cos(8x))/2dxI=14x−18sin(4x)+14∫1+cos(8x)2dx
Which can then be split up and integrated as before:
I=1/4x-1/8sin(4x)+1/8intdx+1/8intcos(8x)dxI=14x−18sin(4x)+18∫dx+18∫cos(8x)dx
I=1/4x-1/8sin(4x)+1/8x+1/64int8cos(8x)dxI=14x−18sin(4x)+18x+164∫8cos(8x)dx
I=3/8x-1/8sin(4x)+1/64sin(8x)+CI=38x−18sin(4x)+164sin(8x)+C