How do you integrate tanx / (cosx)^2?

2 Answers
Oct 18, 2016

inttanx/(cosx)^2dx=1/2tan^2x+C

Explanation:

Let u=tanx, hence du=sec^2xdx

Hence inttanx/(cosx)^2dx

= inttanxsec^2xdx

= intudu

= u^2/2

= 1/2tan^2x+C

Oct 19, 2016

sec^2x/2+C" " or " "tan^2x/2+C

Explanation:

I=inttanx/cos^2xdx

Since tanx=sinx/cosx:

I=intsinx/cos^3xdx

We will use the substitution u=cosx, which implies that du=-sinxdx:

I=-int(-sinx)/cos^3xdx

I=-intu^-3du

Using the typical power rule for integration:

I=-(u^-2/(-2))+C

I=1/(2u^2)+C

I=1/(2cos^2x)+C

I=sec^2x/2+C

This is equivalent to the answer found by Shwetank Mauria, as sec^2x and tan^2x are separated by a constant: sec^2x=tan^2x+1.

I=(tan^2x+1)/2+C

I=tan^2x/2+1/2+C

The 1/2 is absorbed into C;

I=tan^2x/2+C

Both answers are valid.