How do you find the antiderivative of int tan^3xsecx dx∫tan3xsecxdx?
1 Answer
Feb 2, 2017
Explanation:
I=inttan^3xsecxdxI=∫tan3xsecxdx
Rewrite this using
I=inttan^2xtanxsecxdxI=∫tan2xtanxsecxdx
I=int(sec^2x-1)(secxtanx)dxI=∫(sec2x−1)(secxtanx)dx
Let
I=int(u^2-1)duI=∫(u2−1)du
I=1/3u^3-u+CI=13u3−u+C
I=1/3sec^3x-secx+CI=13sec3x−secx+C