How do you find the antiderivative of int sin^3xdx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Andrea S. Dec 4, 2016 int sin^3xdx = (cos^3x)/3-cosx+C Explanation: Note that: sin^3x = sin x*sin^2x= sin x (1-cos^2x) So: int sin^3xdx = int sin x (1-cos^2x)dx = int sin x dx -int cos^2x sinxdx But -sinx dx = d cosx int sin^3xdx = -int d(cosx) +int cos^2x d( cosx ) = (cos^3x)/3-cosx Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1336 views around the world You can reuse this answer Creative Commons License