Question #0d230

1 Answer
Aug 5, 2017

Depending on interval of integration, I get +-1/(2(1-cosx)^2) +C

Explanation:

int (-sqrt(1+cosx))/(1-cosx)^(5/2) dx = int (-sqrt(1+cosx)(sqrt(1-cosx)))/((1-cosx)^(5/2)(1-cosx)^(1/2)) dx

= int(-sqrt(1-cos^2x))/(1-cosx)^3 dx

= int(-sqrt(sin^2x))/(1-cosx)^3 dx

= int(+-sinx)/(1-cosx)^3 dx

Now integrate by substitution u = 1-cosx to get

= +-1/(2(1 - cosx)^2) +C

Note

The integrand is never positive, so the integral should be non-positive on any interval on which it exists as well.

So the indefinite integral should be:

(-1)/(2(1 - cosx)^2) +C " " (I think.)