How do you integrate int (theta^2+sec^2theta)d theta∫(θ2+sec2θ)dθ?
1 Answer
Dec 5, 2016
Explanation:
I=int(theta^2+sec^2theta)d thetaI=∫(θ2+sec2θ)dθ
Split up the integral:
I=inttheta^2d theta+intsec^2thetad thetaI=∫θ2dθ+∫sec2θdθ
Think of the following two things:
intx^ndx=x^(n+1)/(n+1)+C∫xndx=xn+1n+1+C d/dxtanx=sec^2x=>intsec^2xdx=tanx+Cddxtanx=sec2x⇒∫sec2xdx=tanx+C
Don't be tripped up by the use of
Thus:
I=theta^3/3+tantheta+CI=θ33+tanθ+C