How do you integrate int cosx/sqrt(1-2sinx) ?

1 Answer
Jul 30, 2016

-sqrt(1-2sinx)+C

Explanation:

We have:

intcosx/sqrt(1-2sinx)dx

Let: u=1-2sinx. This implies that du=-2cosxdx.

intcosx/sqrt(1-2sinx)dx=-1/2int(-2cosx)/sqrt(1-2sinx)dx

=-1/2int(du)/sqrtu=-1/2intu^(-1/2)du=-1/2(u^(-1/2+1)/(-1/2+1))+C

=-u^(1/2)+C=-sqrt(1-2sinx)+C