How do you integrate int cosx/sqrt(1-2sinx) ?
1 Answer
Jul 30, 2016
Explanation:
We have:
intcosx/sqrt(1-2sinx)dx
Let:
intcosx/sqrt(1-2sinx)dx=-1/2int(-2cosx)/sqrt(1-2sinx)dx
=-1/2int(du)/sqrtu=-1/2intu^(-1/2)du=-1/2(u^(-1/2+1)/(-1/2+1))+C
=-u^(1/2)+C=-sqrt(1-2sinx)+C