What is int xtan^3 (5x)* sec^6 (5x)dx?

1 Answer

int x* tan^3 (5x)* sec^6 (5x) dx

=x/40 tan^8(5x)-1/1400 tan^7(5x)+x/15 tan^6(5x)-1/600 tan^5(5x)+x/20 tan^4 (5x)-1/1800 tan^3(5x)+1/600 tan(5x)-x/120+C

Explanation:

Use integration by parts formula int u dv=uv-int v du

from the given int x* tan^3 (5x)* sec^6 (5x) dx

Let u = x
dv = tan^3(5x) sec^6(5x) dx

expand using Trigonometric identities

dv=tan^3(5x) sec^4(5x) sec^2(5x) dx
dv=tan^3(5x)(tan^2(5x)+1)^2* sec^2(5x) dx
dv= tan^3(5x)[tan^4(5x)+2 tan^2(5x) +1] sec^2(5x) dx
dv=[tan^7(5x)+2 tan^5(5x) + tan ^3(5x)] sec^2(5x) dx

after integration

v=1/40 tan^8(5x) +1/15 tan ^6(5x) +1/20 tan^4(5x)

du = dx

Use now the formula int u dv=uv-int v du