How do you find the integral of sin^3[x]dx?

1 Answer
Mar 19, 2016

intsin^3(x)dx = 1/3cos^3(x)-cos(x)+C

Explanation:

intsin^3(x)dx = intsin(x)(1-cos^2(x))dx

=intsin(x)dx - intsin(x)cos^2(x)dx


For the first integral:

intsin(x)dx = -cos(x)+C


For the second integral, using substitution:

Let u = cos(x) => du = -sin(x)dx
Then

-intsin(x)cos^2(x)dx = intu^2du

=u^3/3+C

=1/3cos^3(x)+C


Putting it all together, we get our final result:

intsin^3(x)dx = intsin(x)dx-intsin(x)cos^2(x)dx

=-cos(x)+1/3cos^3(x)+C