What is the integral of int sin^2(x)cos^4(x) dx?

1 Answer
Jun 5, 2016

\frac{1}{16}(x-\frac{1}{4}\sin (4x))+\frac{1}{6}\sin ^3(x)\cos ^3(x)+C

Explanation:

\int \sin^2(x)cos^4(x)dx

Applying integral reduction,

int sin^2(x) cos^n (x) dx = ((sin^3 (x) cos^(n-1 )(x)) / (2+n)) +((n-1) /(2+n)) int sin^2 (x) cos^(n-2) (x)dx

so,
\int \sin ^2(x)\cos ^4(x)dx
=\frac{\sin ^3(x)\cos ^3(x)}{6}+\frac{3}{6}\int \cos ^2(x)\sin ^2(x)dx

=\frac{\sin ^3(x)\cos ^3(x)}{6}+\frac{3}{6}\int \cos ^2(x)\sin ^2(x)dx

We know,
\int \cos ^2(x)\sin ^2(x)dx=\frac{1}{8}(x-\frac{1}{4}\sin (4x))

Then,
=\frac{\sin ^3(x)\cos ^3(x)}{6}+\frac{3}{6}\frac{1}{8}(x-\frac{1}{4}\sin (4x))

Simplifying,
=\frac{1}{16}(x-\frac{1}{4}\sin (4x))+\frac{1}{6}\sin ^3(x)\cos ^3(x)

Adding constant to the solution,
=\frac{1}{16}(x-\frac{1}{4}\sin (4x))+\frac{1}{6}\sin ^3(x)\cos ^3(x)+C