Question #fc157

1 Answer
May 18, 2017

#int cos^3x dx = sinx-(sin^3x)/3+C#

#int_0^pi sinx cos(cos(x)) dx = 2sin(1)#

Explanation:

Note that: #cos^3x = cosx xx cos^2x#, then use the trigonometric identity:

#cos^2x = (1-sin^2x)#

Now:

#int cos^3x dx = int cosx cos^2x dx = int cosx(1-sin^2x)dx#

Using the linearity of the integral:

#int cos^3x dx = int cosx dx - int sin^2x cosx dx#

The first is a known integral:

#int cosxdx = sinx +C#

In the second substitute #t = sinx# so that #dt = cosx dx# and you have:

#int sin^2x cosx dx = int t^2dt = t^3/3 +C = sin^3x/3+C#

Finally:

#int cos^3x dx = sinx-(sin^3x)/3+C#

Second question:

#int_0^pi sinx cos(cos(x)) dx#

First solve the indefinite integral by substituting:

#t= cosx#

#dt = -sinx dx#

so that:

#int sinx cosx(cosx)dx = - int costdt = -sint +C = -sin(cos(x)) + C#

Now:

#int_0^pi sinx cos(cos(x)) dx = [-sin(cos(x))]_0^pi #

#int_0^pi sinx cos(cos(x)) dx = sin(cos(0)) - sin(cos(pi))#

#int_0^pi sinx cos(cos(x)) dx = sin(1) - sin(-1)#

but #sinx# is an odd function so #sin(-1) = -sin(1)# and then:

#int_0^pi sinx cos(cos(x)) dx = 2sin(1)#