Question #fc157

1 Answer
May 18, 2017

int cos^3x dx = sinx-(sin^3x)/3+C

int_0^pi sinx cos(cos(x)) dx = 2sin(1)

Explanation:

Note that: cos^3x = cosx xx cos^2x, then use the trigonometric identity:

cos^2x = (1-sin^2x)

Now:

int cos^3x dx = int cosx cos^2x dx = int cosx(1-sin^2x)dx

Using the linearity of the integral:

int cos^3x dx = int cosx dx - int sin^2x cosx dx

The first is a known integral:

int cosxdx = sinx +C

In the second substitute t = sinx so that dt = cosx dx and you have:

int sin^2x cosx dx = int t^2dt = t^3/3 +C = sin^3x/3+C

Finally:

int cos^3x dx = sinx-(sin^3x)/3+C

Second question:

int_0^pi sinx cos(cos(x)) dx

First solve the indefinite integral by substituting:

t= cosx

dt = -sinx dx

so that:

int sinx cosx(cosx)dx = - int costdt = -sint +C = -sin(cos(x)) + C

Now:

int_0^pi sinx cos(cos(x)) dx = [-sin(cos(x))]_0^pi

int_0^pi sinx cos(cos(x)) dx = sin(cos(0)) - sin(cos(pi))

int_0^pi sinx cos(cos(x)) dx = sin(1) - sin(-1)

but sinx is an odd function so sin(-1) = -sin(1) and then:

int_0^pi sinx cos(cos(x)) dx = 2sin(1)