How do you find the antiderivative of cos^2 (x)cos2(x)?

1 Answer
Jul 31, 2016

1/4sin(2x)+1/2x+C14sin(2x)+12x+C

Explanation:

The trick to finding this integral is using an identity--here, specifically, the cosine double-angle identity.

Since cos(2x)=cos^2(x)-sin^2(x)cos(2x)=cos2(x)sin2(x), we can rewrite this using the Pythagorean Identity to say that cos(2x)=2cos^2(x)-1cos(2x)=2cos2(x)1. Solving this for cos^2(x)cos2(x) shows us that cos^2(x)=(cos(2x)+1)/2cos2(x)=cos(2x)+12.

Thus:

intcos^2(x)dx=1/2intcos(2x)+1dxcos2(x)dx=12cos(2x)+1dx

We can now split this up and find the antiderivative.

=1/2intcos(2x)dx+1/2int1dx=12cos(2x)dx+121dx

=1/4int2cos(2x)dx+1/2x=142cos(2x)dx+12x

=1/4sin(2x)+1/2x+C=14sin(2x)+12x+C