How do you find the antiderivative of cos^2 (x)cos2(x)?
1 Answer
Jul 31, 2016
Explanation:
The trick to finding this integral is using an identity--here, specifically, the cosine double-angle identity.
Since
Thus:
intcos^2(x)dx=1/2intcos(2x)+1dx∫cos2(x)dx=12∫cos(2x)+1dx
We can now split this up and find the antiderivative.
=1/2intcos(2x)dx+1/2int1dx=12∫cos(2x)dx+12∫1dx
=1/4int2cos(2x)dx+1/2x=14∫2cos(2x)dx+12x
=1/4sin(2x)+1/2x+C=14sin(2x)+12x+C