How do you integrate sec^3x "d"x?

2 Answers
May 22, 2018

intsec^3x"d"x=1/2(secxtanx+lnabs(secx+tanx))+"c"

Explanation:

For intsec^3x"d"x, use integration by parts.

Let u=secx and "d"u=secxtanx"d"x

and "d"v=sec^2x"d"x thus v=tanx

Now we plug this into the formula

intu("d"v)/("d"x)"d"x=uv-intv("d"u)/("d"x)"d"x

So

intsec^3x"d"x=secxtanx-intsecxtan^2x"d"x

=secxtanx-intsecx(sec^2x-1)"d"x

=secxtanx-intsec^3x"d"x+intsecx"d"x

Thus

2intsec^3x"d"x=secxtanx+intsecx"d"x

So

2intsec^3x"d"x=secxtanx+lnabs(secx+tanx)+"C"

So

intsec^3"d"x=1/2(secxtanx+lnabs(secx+tanx))+"c"

May 22, 2018

Perform integration by parts, then a substitution.

int sec^3(x) dx = 1/2(tan(x)sec(x)+lnabs(secx+tanx))+ C

Explanation:

1. Integrating by parts

Since sec^3(x) = sec^2(x) sec(x),

int sec^3(x)dx = int sec^2(x) sec(x)dx

With u=sec(x) <=> u'=sec(x)tan(x), v'=sec^2(x) <=> v=tan(x), and int uv'dx=uv-int u'vdx, we have

int sec^3(x)dx=tan(x)sec(x)-int sec(x)tan^2(x)dx

Since sec^2(x)-1=tan^2(x),

int sec(x)tan^2(x)dx
= int sec(x)(sec^2(x)-1)dx
=int sec^3(x)dx-int sec(x)dx

Hence

int sec^3(x)dx
=tan(x)sec(x)-(int sec^3(x)dx-int sec(x)dx)
=tan(x)sec(x)-int sec^3(x)dx+int sec(x)dx

If we add int sec^3(x)dx to both sides, we have

2int sec^3(x)dx=tan(x)sec(x)+int sec(x)dx

int sec^3(x)dx=1/2(tan(x)sec(x)+int sec(x)dx)

2. Integrating sec(x)

Now to figure out what int sec(x)dx is, you can either look it up in a formula sheet or derive it, as I will now.

Now there are a couple ways to derive this, but I will use the shortest and most common method for this.

int sec(x)dx=int sec(x)/1dx

Now if I multiply the numerator and denominator by sec x+tan x,

int sec(x)dx=int (sec x(sec x+tan x))/(sec x + tan x)dx
=int (sec^2(x)+secxtanx)/(sec x+ tan x)dx

Now let u=sec x+tan x, thus du=(secxtanx+sec^2(x))dx

int (sec^2(x)+secxtanx)/(sec x+ tan x)dx

=int 1/u * (sec^2(x)+secxtanx)dx

=int 1/u du = lnabs(u)+C=lnabs(secx+tanx)+C

3. Formulating the final answer

Hence, given int sec(x)dx=lnabs(secx+tanx)+C,

int sec^3(x)dx=1/2(tan(x)sec(x)+int sec(x)dx)

=1/2(tan(x)sec(x)+lnabs(secx+tanx)) + C