1. Integrating by parts
Since sec^3(x) = sec^2(x) sec(x),
int sec^3(x)dx = int sec^2(x) sec(x)dx
With u=sec(x) <=> u'=sec(x)tan(x), v'=sec^2(x) <=> v=tan(x), and int uv'dx=uv-int u'vdx, we have
int sec^3(x)dx=tan(x)sec(x)-int sec(x)tan^2(x)dx
Since sec^2(x)-1=tan^2(x),
int sec(x)tan^2(x)dx
= int sec(x)(sec^2(x)-1)dx
=int sec^3(x)dx-int sec(x)dx
Hence
int sec^3(x)dx
=tan(x)sec(x)-(int sec^3(x)dx-int sec(x)dx)
=tan(x)sec(x)-int sec^3(x)dx+int sec(x)dx
If we add int sec^3(x)dx to both sides, we have
2int sec^3(x)dx=tan(x)sec(x)+int sec(x)dx
int sec^3(x)dx=1/2(tan(x)sec(x)+int sec(x)dx)
2. Integrating sec(x)
Now to figure out what int sec(x)dx is, you can either look it up in a formula sheet or derive it, as I will now.
Now there are a couple ways to derive this, but I will use the shortest and most common method for this.
int sec(x)dx=int sec(x)/1dx
Now if I multiply the numerator and denominator by sec x+tan x,
int sec(x)dx=int (sec x(sec x+tan x))/(sec x + tan x)dx
=int (sec^2(x)+secxtanx)/(sec x+ tan x)dx
Now let u=sec x+tan x, thus du=(secxtanx+sec^2(x))dx
int (sec^2(x)+secxtanx)/(sec x+ tan x)dx
=int 1/u * (sec^2(x)+secxtanx)dx
=int 1/u du = lnabs(u)+C=lnabs(secx+tanx)+C
3. Formulating the final answer
Hence, given int sec(x)dx=lnabs(secx+tanx)+C,
int sec^3(x)dx=1/2(tan(x)sec(x)+int sec(x)dx)
=1/2(tan(x)sec(x)+lnabs(secx+tanx)) + C