How do you integrate (sinx+secx)/tanx ? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Marko T. Mar 15, 2018 Rewrite int((sinx+1/cosx)/(sinx/cosx))dx =int(((sinxcosx+1)/cancelcosx)/(sinx/cancelcosx))dx =int(((cancelsinxcosx)/cancelsinx)+1/sinx)dx =int(cosxdx)+int(cscxdx) Now both of these are standard integrals =sinx-ln(csc(x)+cot(x)) +Constant Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 5259 views around the world You can reuse this answer Creative Commons License