How do you find the antiderivative of cos2(x)?

2 Answers
Jul 30, 2016

cos2(x)dx=x2+cos(x)sin(x)2+C

Explanation:

cos2(x)dx=?

let us use the reduction formula :

cosn(x)dx=n1ncosn2(x)dx+cosn1(x)sin(x)n

Apply n=2

cos2(x)dx=212cos22(x)dx+cos21(x)sin(x)2

cos2(x)dx=12cos0(x)dx+cos(x)sin(x)2

cos2(x)dx=12dx+cos(x)sin(x)2

cos2(x)dx=12x+cos(x)sin(x)2

cos2(x)dx=x2+cos(x)sin(x)2+C

Remember that cos2x=cos2xsin2xcos2x=2cos2x1cos2x=12(1+cos2x)

Hence

cos2xdx=12(1+cos2x)dx=121dx+12cos2xdx=12x+14sin2x+c