What is int x^2sin(x-1) dx?

1 Answer
Oct 25, 2016

=-x^2cos(x-1)+2xsin(x-1)+2cos(x-1)

Explanation:

The integral is determined using the method of integration by parts :

color(red)(intu(x)dv(x)=u(x)v(x)-intv(x)du(x))

Take into consideration the integral of the trigonometric function
color(red)(intsin(x-1)dx=-cos(x-1))

Let us compute the given integral:
consider
color(blue)(u(x)=x^2rArrd(u(x))=2xdx)
then,
color(brown)(dv(x)=sin(x-1)rArrv(x)=-cos(x-1))

intx^2sin(x-1)dx integral 1
=color(red)(u(x)*v(x)-intdu(x)v(x))

=color(blue)x^2*color(brown)(-cos(x-1))-intcolor(blue)(2xdx)color(brown)((-cos(x-1))
=-x^2cos(x-1)+2color(purple)(intxcos(x-1)dx)

color(purple)(intxcos(x-1)dx)

let a(x)=xrArrda(x)=dx
then db(x)=cos(x-1)rArrb(x)=sin(x-1)

color(purple)(intxcos(x-1)dx)
=color(red)(a(x)*b(x)-intb(x)da(x))
=xsin(x-1)-intsin(x-1)dx
=xsin(x-1)-intd(-cos(x-1))
=xsin(x-1)+intdcos(x-1)
color(purple)(=xsin(x-1)+cos(x-1))

Let us substitute color(purple)(intxcos(x-1)dx)
in integral 1

intx^2sin(x-1)dx
=-x^2cos(x-1)+2color(purple)(intxcos(x-1)dx)
=-x^2cos(x-1)+2(xsin(x-1)+cos(x-1))
=-x^2cos(x-1)+2xsin(x-1)+2cos(x-1)

Therefore,
intx^2sin(x-1)dx
=-x^2cos(x-1)+2xsin(x-1)+2cos(x-1)