Question #434db

1 Answer
Sep 11, 2016

1/2[1/sqrt2ln|sec(x-pi/4)+tan(x-pi/4)|-1/(cosx+sinx)]+C.

Explanation:

The Integrand=secx/(1+tan x)^2=(1/cosx)/((1+sinx/cosx)^2)

=(1/cosx)(cos^2x/(cosx+sinx)^2)=cosx/(cosx+sinx)^2

Now, using Quotient Rule for Diffn., we have, d/dx(1/(cosx+sinx))

={(cosx+sinx)d/dx(1)-1d/dx(cosx+sinx)}/(cosx+sinx)^2

=(sinx-cosx)/(cosx+sinx)^2.

rArr int(sinx-cosx)/(cosx+sinx)^2dx=1/(cosx+sinx)............(star)

I=intcosx/(cosx+sinx)^2dx=1/2int(2cosx)/(cosx+sinx)^2dx

=1/2int{(cosx+sinx)+(cosx-sinx)}/(cosx+sinx)^2dx

=1/2[int(cosx+sinx)/(cosx+sinx)^2dx+int(cosx-sinx)/(cosx+sinx)^2dx]

=1/2[int1/(cosx+sinx)dx-int(sin-cosx)/(cosx+sinx)^2dx]

=1/2[J-1/(cosx+sinx)]...........,[by (star)], where,

J=int1/(cosx+sinx)dx

Here, cosx+sinx=sqrt2(1/sqrt2cosx+1/sqrt2sinx)=sqrt2cos(x-pi/4)

:. J =int1/(sqrt2cos(x-pi/4))dx=1/sqrt2intsec(x-pi/4)dx

=1/sqrt2ln|sec(x-pi/4)+tan(x-pi/4)|.

Altogether,

I=1/2[1/sqrt2ln|sec(x-pi/4)+tan(x-pi/4)|-1/(cosx+sinx)]+C.

Enjoy Maths.!