How do you find the integral of cos(x)^2*sin(x)^2cos(x)2⋅sin(x)2?
1 Answer
Explanation:
This can be written as:
I=intcos^2(x)sin^2(x)dxI=∫cos2(x)sin2(x)dx
We can rewrite this using the identity
I=1/4intsin^2(2x)dxI=14∫sin2(2x)dx
Let
I=1/8intsin^2(2x)*(2dx)=1/8intsin^2(u)duI=18∫sin2(2x)⋅(2dx)=18∫sin2(u)du
The way to integrate this is to use another double-angle formula.
cos(2u)=1-2sin^2(u)" "=>" "sin^2(u)=1/2(1-cos(2u))cos(2u)=1−2sin2(u) ⇒ sin2(u)=12(1−cos(2u))
Thus:
I=1/16int(1-cos(2u))duI=116∫(1−cos(2u))du
I=1/16intdu-1/16intcos(2u)duI=116∫du−116∫cos(2u)du
The first integral is the most basic integral and the second can be solved through inspection or substitution, where
I=1/16u-1/32sin(2u)+CI=116u−132sin(2u)+C
Since
I=x/8-1/32sin(4x)+CI=x8−132sin(4x)+C