How do you find the integral of cos(x)^2*sin(x)^2cos(x)2sin(x)2?

1 Answer
Oct 21, 2016

x/8-1/32sin(4x)+Cx8132sin(4x)+C

Explanation:

This can be written as:

I=intcos^2(x)sin^2(x)dxI=cos2(x)sin2(x)dx

We can rewrite this using the identity sin(2x)=2sin(x)cos(x)sin(2x)=2sin(x)cos(x). Thus, sin(x)cos(x)=sin(2x)/2sin(x)cos(x)=sin(2x)2. Square both sides to see that cos^2(x)sin^2(x)=sin^2(2x)/4cos2(x)sin2(x)=sin2(2x)4. Thus:

I=1/4intsin^2(2x)dxI=14sin2(2x)dx

Let u=2xu=2x so that du=2dxdu=2dx.

I=1/8intsin^2(2x)*(2dx)=1/8intsin^2(u)duI=18sin2(2x)(2dx)=18sin2(u)du

The way to integrate this is to use another double-angle formula.

cos(2u)=1-2sin^2(u)" "=>" "sin^2(u)=1/2(1-cos(2u))cos(2u)=12sin2(u) sin2(u)=12(1cos(2u))

Thus:

I=1/16int(1-cos(2u))duI=116(1cos(2u))du

I=1/16intdu-1/16intcos(2u)duI=116du116cos(2u)du

The first integral is the most basic integral and the second can be solved through inspection or substitution, where v=2uv=2u.

I=1/16u-1/32sin(2u)+CI=116u132sin(2u)+C

Since u=2xu=2x:

I=x/8-1/32sin(4x)+CI=x8132sin(4x)+C