How do I evaluate int_0^pisin(x)dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Nam D. Apr 22, 2018 2 Explanation: Given: int_0^pisin(x) \ dx. =[-cos(x)]""_0^pi =-cos(pi)-(-cos(0)) =-cos(pi)+cos(0) =-(-1)+1 =1+1 =2 Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1849 views around the world You can reuse this answer Creative Commons License