Find int \ (sin2x+1)/(1-sin2x) \ dx ?
1 Answer
int \ (sin2x+1)/(1-sin2x) \ dx = - x -2/(tanx-1) + C
Explanation:
We seek:
I = int \ (sin2x+1)/(1-sin2x) \ dx
We can write this as:
I = int \ (1+sin2x)/(1-sin2x) \ dx
\ \ \ = -int \ (-1-sin2x)/(1-sin2x) \ dx
\ \ \ = -int \ (1-sin2x-2)/(1-sin2x) \ dx
\ \ \ = -int \ 1 -2/(1-sin2x) \ dx
\ \ \ = - int \ dx + 2 \ int 1/(1-sin2x) \ dx ..... [A]
The first integral is standard, and for the second we have to perform some further analysis:
Using a standard Weierstraß trigonometric identity we have:
\ \ \ \ \ \ \ sin x = (2tan(x/2))/(1+tan^2(x/2))
:. sin 2x = (2tan(x))/(1+tan^2(x)) = 2tanx/sec^2x
So, for the second integral,
I_2 = int \ 1/(1-sin2x) \ dx
\ \ \ = int \ 1/(1-2tanx/sec^2x) \ dx
\ \ \ = int \ 1/( (sec^2x-2tanx)/sec^2x) \ dx
\ \ \ = int \ (sec^2x)/( sec^2x-2tanx) \ dx
\ \ \ = int \ (sec^2x)/( tan^2x+1-2tanx) \ dx
\ \ \ = int \ (sec^2x)/( tanx-1 )^2 \ dx
We can now easily integrate this if we perform a substitution:
Let
u= tanx-1 => (du)/dx = sec^2x
Substituting into
I_2 = int \ 1/u^2 \ du
\ \ \ = -1/u
\ \ \ = -1/(tanx-1)
Hence, we can now integrate [A] to get:
I = - x + 2(-1/(tanx-1)) + C
\ \ = - x -2/(tanx-1) + C