What is the integral of int cos^2(x) tan^3(x) dxcos2(x)tan3(x)dx?

1 Answer

((tanx)^2/2)+c((tanx)22)+c

Explanation:

int(cosx)^2(tanx)^3(dx)(cosx)2(tanx)3(dx)

=int(cosx)^2times(sinx)^3/(cosx)^3times(dx)(cosx)2×(sinx)3(cosx)3×(dx)

=int(sinx)^3/(cosx)(dx)(sinx)3cosx(dx)

=int(tanx)(secx)^2(dx)(tanx)(secx)2(dx)

Let tanx = ttanx=t
:.sec^2x dx = dt

Replacing,
=inttdt

=t^2/2+c

Replacing back,
=((tanx)^2/2)+c