What is the integral of int cot^2(x)secxdxcot2(x)secxdx?

1 Answer
Mar 17, 2016

-cscx+Ccscx+C

Explanation:

Using the definitions of cotxcotx and secxsecx, we see that

intcot^2xsecxdx=int(cos^2x/sin^2x)(1/cosx)dxcot2xsecxdx=(cos2xsin2x)(1cosx)dx

=intcosx/sin^2xdx=intcosx/sinx(1/sinx)dx=cosxsin2xdx=cosxsinx(1sinx)dx

=intcotxcscxdx=cotxcscxdx

This is a common integral that equals

=-cscx+C=cscx+C

Another method we could have used was to use substitution at intcosx/sin^2xdxcosxsin2xdx:

If u=sinxu=sinx, then du=cosxdxdu=cosxdx, so we have

intcosx/sin^2xdx=int1/u^2du=intu^-2ducosxsin2xdx=1u2du=u2du

Then, through the rule

intu^ndu=u^(n+1)/(n+1)+Cundu=un+1n+1+C

We obtain

intu^-2du=u^-1/(-1)+C=-1/u+Cu2du=u11+C=1u+C

=-1/sinx+C=-cscx+C=1sinx+C=cscx+C