What is the integral of int cot^2(x)secxdx∫cot2(x)secxdx?
1 Answer
Mar 17, 2016
Explanation:
Using the definitions of
intcot^2xsecxdx=int(cos^2x/sin^2x)(1/cosx)dx∫cot2xsecxdx=∫(cos2xsin2x)(1cosx)dx
=intcosx/sin^2xdx=intcosx/sinx(1/sinx)dx=∫cosxsin2xdx=∫cosxsinx(1sinx)dx
=intcotxcscxdx=∫cotxcscxdx
This is a common integral that equals
=-cscx+C=−cscx+C
Another method we could have used was to use substitution at
If
intcosx/sin^2xdx=int1/u^2du=intu^-2du∫cosxsin2xdx=∫1u2du=∫u−2du
Then, through the rule
intu^ndu=u^(n+1)/(n+1)+C∫undu=un+1n+1+C
We obtain
intu^-2du=u^-1/(-1)+C=-1/u+C∫u−2du=u−1−1+C=−1u+C
=-1/sinx+C=-cscx+C=−1sinx+C=−cscx+C