How do you find int sec^2x/(1-sinx) ?

1 Answer
Mar 22, 2016

=tanx +tan^3x/3+sec^3x/3+C

Explanation:

int(sec^2x)/(1-sinx)dx
=int(sec^2x)/(1-sinx)*(1+sinx)/(1+sinx)dx

=int(sec^2x)/(1-sin^2x)*(1+sinx)dx

=int(sec^2x/cos^2x)*(1+sinx)dx

=intsec^2x*(1/cos^2x+sinx/cos^2x)dx
=intsec^2x*sec^2xdx+intsec^2xsecxtanxdx

=intsec^2x*(1+tan^2x)dx+intsec^2xsecxtanxdx
For first part let u=tanx =>du=sec^2xdx
For second part let v = secx =>dv=secxtanxdx

The whole integral becomes
=int(1+u^2)du+intv^2dv
=u +u^3/3+v^3/3+C

=tanx +tan^3x/3+sec^3x/3+C