How do you integrate int (2sinx+3cosx)dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Alan N. Feb 27, 2017 3sinx-2cosx+C Explanation: int (2sinx+3cosx)dx= 2*int sinx dx + 3* int cosx dx Applying standard integrals: = 2*(-cosx) +3*sinx +C =3sinx-2cosx+C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 12309 views around the world You can reuse this answer Creative Commons License