How do you find int x*secx^2dxxsecx2dx?

1 Answer

int (x* sec x^2) dx=1/2*ln (sec x^2+tan x^2)+C(xsecx2)dx=12ln(secx2+tanx2)+C

Explanation:

What we have here as given is

int (x* sec x^2) dx(xsecx2)dx

take note: differential of x^2x2 is d(x^2)=2x*dxd(x2)=2xdx

We do a numerical preparation here by placing a 2 inside the integral and 1/2 outside the integral.

int (x* sec x^2) dx=1/2int ( sec x^2)*(2x) dx(xsecx2)dx=12(secx2)(2x)dx

from the formula

int sec u* du=ln (sec u+tan u)+Csecudu=ln(secu+tanu)+C

color(red)(int (x* sec x^2) dx=1/2int ( sec x^2)*(2x) dx=(xsecx2)dx=12(secx2)(2x)dx=
color(red)(1/2*ln (sec x^2+tan x^2)+C)12ln(secx2+tanx2)+C

Let us do a little checking by differentiation

from our answer

1/2*ln (sec x^2+tan x^2)+C12ln(secx2+tanx2)+C

Let us perform differentiation

d/dx(1/2*ln (sec x^2+tan x^2)+C)ddx(12ln(secx2+tanx2)+C)

d/dx(1/2*ln (sec x^2+tan x^2))+d/dx(C)ddx(12ln(secx2+tanx2))+ddx(C)

1/2*(1/(sec x^2+tan x^2))*d/dx(sec x^2+tan x^2)+012(1secx2+tanx2)ddx(secx2+tanx2)+0

1/2*(1/(sec x^2+tan x^2))*(sec x^2*tan x^2*d/dx(x^2)+sec^2 x^2*d/dx(x^2))+012(1secx2+tanx2)(secx2tanx2ddx(x2)+sec2x2ddx(x2))+0

1/2*(1/(sec x^2+tan x^2))*(sec x^2*tan x^2*2x+sec^2 x^2*2x)12(1secx2+tanx2)(secx2tanx22x+sec2x22x)

factoring the common monomial factor 2x*sec x^22xsecx2

1/2*((2x*sec x^2)/(sec x^2+tan x^2))*(sec x^2+tan x^2)12(2xsecx2secx2+tanx2)(secx2+tanx2)

1/cancel2*((cancel2x*sec x^2)/cancel(sec x^2+tan x^2))*cancel(sec x^2+tan x^2)

x * sec x^2" "which is the given integrand

God bless....I hope the explanation is useful.