Evaluate the integral? : int cscx dx

1 Answer
Jul 4, 2017

int \ cscx \ dx = ln|cscx-cotx| + C

Explanation:

To derive the result for this integral we multiply numerator and denominator by cscx-cotx. This "trick" is a standard technique for this particular result.

We can write the integral as:

int \ cscx \ dx = int \ cscx \ (cscx-cotx)/(cscx-cotx) \ dx

" " = int \ (csc^2x-cotxcscx)/(cscx-cotx) \ dx

Now we can perform a substitution, Let:

u = cscx-cotx => (du)/dx = csc^2x-cotxcscx

Substituting into the integral we get:

int \ cscx \ dx = int \ 1/u \ du

" " = ln|u| + C

Restoring the substitution we get:

int \ cscx \ dx = ln|cscx-cotx| " " QED