Evaluate the integral? : int cscx dx
1 Answer
Jul 4, 2017
int \ cscx \ dx = ln|cscx-cotx| + C
Explanation:
To derive the result for this integral we multiply numerator and denominator by
We can write the integral as:
int \ cscx \ dx = int \ cscx \ (cscx-cotx)/(cscx-cotx) \ dx
" " = int \ (csc^2x-cotxcscx)/(cscx-cotx) \ dx
Now we can perform a substitution, Let:
u = cscx-cotx => (du)/dx = csc^2x-cotxcscx
Substituting into the integral we get:
int \ cscx \ dx = int \ 1/u \ du
" " = ln|u| + C
Restoring the substitution we get:
int \ cscx \ dx = ln|cscx-cotx| " " QED