What is int 1/ sqrt(x^2 - 8^2) dx∫1√x2−82dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer F. Javier B. Apr 23, 2018 See below Explanation: Try the change x=8secthetax=8secθ Then dx=8secthetatanthetad thetadx=8secθtanθdθ int1/(sqrt(x^2-8))dx=int(sqrt8secthetatanthetad theta)/sqrt(8^2(sec^2theta-1))=∫1√x2−8dx=∫√8secθtanθdθ√82(sec2θ−1)= =int(cancel8secthetacanceltanthetad theta)/(cancel8canceltantheta))=intsecthetad theta=ln(sectheta+tantheta)+C=ln(x/8+sqrt(x^2-8^2)/8)+C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 4103 views around the world You can reuse this answer Creative Commons License