How do you find the integral of #int [cos^3 (2x)] dx #? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Sasha P. Sep 21, 2015 #1/2sin 2x-1/6sin^3 2x+C# Explanation: #I=int cos^3 2xdx = int cos 2x cos^2 2x dx# #I=int cos 2x (1-sin^2 2x)dx# #sin 2x=t => 2cos 2xdx = dt => cos 2xdx = dt/2# #I=int(1-t^2)dt/2=1/2(t-t^3/3)+C# #I=1/2sin 2x-1/6sin^3 2x+C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 23904 views around the world You can reuse this answer Creative Commons License