What is the integral of int tan(2x) dx?

1 Answer
Feb 19, 2016

inttan(2x)dx =-1/2ln|cos(2x)|+C

Explanation:

We will proceed using substitution, along with the fact that int1/xdx = ln|x|+C

Let u = cos(2x) => du = -2sin(2x)dx

Then we have

inttan(2x)dx = intsin(2x)/cos(2x)dx

=-1/2int1/cos(2x)(-2sin(2x))dx

=-1/2int1/udu

=-1/2ln|u|+C

=-1/2ln|cos(2x)|+C