What is the integral of cos(t^2)cos(t2)?

3 Answers

int_(-1)^(1) cos(t^2) dt = 1.809011cos(t2)dt=1.8090

Explanation:

Well, the only way I know how to do this without using functions I don't know (or looking up Fresnel integrals) is to expand this into a Maclaurin series to estimate an easier form of the function to integrate. If you want something centered at a different x = ax=a, you would replace this method with a Taylor series...

cos(t^2) = |[sum_(n=0)^(oo) ((-1)^(n) x^(2n))/((2n)!)]|_(x = t^2)cos(t2)=∣ ∣[n=0(1)nx2n(2n)!]∣ ∣x=t2

= sum_(n=0)^(oo) ((-1)^(n) t^(4n))/((2n)!)=n=0(1)nt4n(2n)!

= 1 - t^4/2 + t^8/24 - t^12/720 + t^(10)/(40320) - . . . =1t42+t824t12720+t1040320...

graph{(y - cos(x^2))(y - 1 + x^4/2 - x^8/24 + x^12/720 - x^(10)/(40320)) = 0 [-4.934, 4.935, -2.464, 2.47]}

Here, the bottom graph is the estimate graph from the Maclaurin series.

If we truncate this at the fifth nonzero term, we can at least get the integral near t = 0t=0:

int cos(t^2) dt ~~ int 1 - t^4/2 + t^8/24 - t^12/720 + t^(10)/(40320)dtcos(t2)dt1t42+t824t12720+t1040320dt

= t - t^5/10 + t^9/(216) - t^(13)/(9360) + t^(11)/(443520)=tt510+t9216t139360+t11443520

for tt really close to 00.

To compare, I used Wolfram Alpha to get:

int_(-1)^(1) cos(t^2) dt = ul(1.8090)color(red)(4848 cdots)

int_(-1)^(1) 1 - t^4/2 + t^8/24 - t^12/720 + t^(10)/(40320)dt = ul(1.8090)color(red)(5009cdots)

The only drawback is that this approximation only works near t = 0.

int_(-1.5)^(1.5) cos(t^2) dt = ul(1.79)color(red)(837cdots)

int_(-1.5)^(1.5) 1 - t^4/2 + t^8/24 - t^12/720 + t^(10)/(40320)dt = ul(1.79)color(red)(601cdots)

int_(-2)^(2) cos(t^2) dt = color(red)(0.92292292cdots)

int_(-2)^(2) 1 - t^4/2 + t^8/24 - t^12/720 + t^(10)/(40320)dt = color(red)(0.59954860cdots)

int_(-2.5)^(2.5) cos(t^2) dt = color(red)(1.21062cdots)

int_(-2.5)^(2.5) 1 - t^4/2 + t^8/24 - t^12/720 + t^(10)/(40320)dt = color(red)(-10.9426cdots)

Jul 11, 2017

Well, the only way I know how to do this without using functions I don't know (or looking up Fresnel integrals) is to expand this into a Maclaurin series to estimate an easier form of the function to integrate. If you want something centered at a different x = a, you would replace this method with a Taylor series...

cos(t^2) = |[sum_(n=0)^(oo) ((-1)^(n) x^(2n))/((2n)!)]|_(x = t^2)

= sum_(n=0)^(oo) ((-1)^(n) t^(4n))/((2n)!)

= 1 - t^4/2 + t^8/24 - t^12/720 + t^(10)/(40320) - . . .

graph{(y - cos(x^2))(y - 1 + x^4/2 - x^8/24 + x^12/720 - x^(10)/(40320)) = 0 [-4.934, 4.935, -2.464, 2.47]}

Here, the bottom graph is the estimate graph from the Maclaurin series.

If we truncate this at the fifth nonzero term, we can at least get the integral near t = 0:

int cos(t^2) dt ~~ int 1 - t^4/2 + t^8/24 - t^12/720 + t^(10)/(40320)dt

= t - t^5/10 + t^9/(216) - t^(13)/(9360) + t^(11)/(443520)

for t really close to 0.

To compare, I used Wolfram Alpha to get:

int_(-1)^(1) cos(t^2) dt = ul(1.8090)color(red)(4848 cdots)

int_(-1)^(1) 1 - t^4/2 + t^8/24 - t^12/720 + t^(10)/(40320)dt = ul(1.8090)color(red)(5009cdots)

The only drawback is that this approximation only works near t = 0.

int_(-1.5)^(1.5) cos(t^2) dt = ul(1.79)color(red)(837cdots)

int_(-1.5)^(1.5) 1 - t^4/2 + t^8/24 - t^12/720 + t^(10)/(40320)dt = ul(1.79)color(red)(601cdots)

int_(-2)^(2) cos(t^2) dt = color(red)(0.92292292cdots)

int_(-2)^(2) 1 - t^4/2 + t^8/24 - t^12/720 + t^(10)/(40320)dt = color(red)(0.59954860cdots)

int_(-2.5)^(2.5) cos(t^2) dt = color(red)(1.21062cdots)

int_(-2.5)^(2.5) 1 - t^4/2 + t^8/24 - t^12/720 + t^(10)/(40320)dt = color(red)(-10.9426cdots)

Jul 12, 2017

There is no elementary solution.

Explanation:

We want to find:

int \ cos(t^2) \ dt

As indicated in the alternative answers we can find a Maclaurin Series expansion, Unfortunately there is no elementary solution to the integral.

Instead, Numerical techniques are used to evaluate the following definite integrals:

S(x) = int_0^x \ sin(t^2) \ dt , and
C(x) = int_0^x \ cos(t^2) \ dt

Which are known as the Fresnel integrals.

Typically the values of these function are calculated using computer algorithms, or looked up in tables (in a similar way to that of the Normal Distribution ).

Note: If tables are used, then sometimes the integral functions are normalised with a factor sqrt(2/pi) (again in a similar way to the Normal Distribution normalising factor 1/sqrt(2pi)).