How do you integrate int 1/(x^(3/2) + x^(1/2)) dx1x32+x12dx?

1 Answer
Sep 29, 2016

2arc tansqrtx+C.2arctanx+C.

Explanation:

Let I=int1/(x^(3/2)+x^(1/2))dx=int1/{sqrtx(x+1)}dxI=1x32+x12dx=1x(x+1)dx.

We take subst. sqrtx=t, or, x=t^2 rArr dx=2tdt.x=t,or,x=t2dx=2tdt.

:. I=int1/(t(t^2+1))2tdt=2int1/(t^2+1)dt=2arc tant

Hence, I=2arc tansqrtx+C, as Respected Eric Sia has derived!