How do you integrate int 1/(x^(3/2) + x^(1/2)) dx∫1x32+x12dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Ratnaker Mehta Sep 29, 2016 2arc tansqrtx+C.2arctan√x+C. Explanation: Let I=int1/(x^(3/2)+x^(1/2))dx=int1/{sqrtx(x+1)}dxI=∫1x32+x12dx=∫1√x(x+1)dx. We take subst. sqrtx=t, or, x=t^2 rArr dx=2tdt.√x=t,or,x=t2⇒dx=2tdt. :. I=int1/(t(t^2+1))2tdt=2int1/(t^2+1)dt=2arc tant Hence, I=2arc tansqrtx+C, as Respected Eric Sia has derived! Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 21490 views around the world You can reuse this answer Creative Commons License