Question #f3bd9

1 Answer
Feb 3, 2018

int\ (1-sin^4(2x))/cos^4(2x)\ dx=tan(2x)-x+C

Explanation:

First, we can use the difference of squares formula:
(a+b)(a-b)=a^2-b^2

Applying this to the numerator, we get:
int\ (1-sin^4(2x))/cos^4(2x)\ dx=int\ ((1+sin^2(2x))(1-sin^2(2x)))/cos^4(2x)\ dx

Next we can use the Pythagorean identity to turn 1-sin^2(2x) into cos^2(2x):
int\ ((1+sin^2(2x))cos^2(2x))/cos^4(2x)\ dx=int\ (1+sin^2(2x))/cos^2(2x)\ dx

Now we can split the fraction into two:
int\ (1+sin^2(2x))/cos^2(2x)\ dx=int\ 1/cos^2(2x)\ dx+int\ sin^2(2x)/cos^2(2x)\ dx

I will call the left one Integral 1 and the right one Integral 2

Integral 1
We can use the following identity to rewrite the integral:
1/cos(theta)=sec(theta)

int\ 1/cos^2(2x)\ dx=int\ sec^2(2x)\ dx

We can now introduce a quick u-substitution with u=2x, and divide by 2 to integrate with respect to u:
1/2int\ sec^2(u)\ du

This is the familiar derivative of tan(u):
1/2int\ sec^2(u)\ du=1/2tan(u)+C=1/2tan(2x)+C

Integral 2
We can first use the following identity to rewrite the integral in terms of tan:
sin(theta)/cos(theta)=tan(theta)

int\ sin^2(2x)/cos^2(2x)\ dx=int\ tan^2(2x)\ dx

We can now use this identity to rewrite the integral:
tan^2(theta)=sec^2(theta)-1

This gives:
int\ tan^2(2x)\ dx=int\ sec^2(2x)-1\ dx

We already worked out the left part in Integral 1, and the right part is just equal to x:
int\ sec^2(2x)-1\ dx=1/2tan(2x)-x+C

Completing the original integral
Now that we know Integral 1 and Integral 2, we can plug them into our original integral to get the final answer:
int\ (1-sin^4(2x))/cos^4(2x)\ dx=1/2tan(2x)+1/2tan(2x)-x+C=

=tan(2x)-x+C