How do you evaluate the integral int tan^3thetatan3θ?

1 Answer
Jan 21, 2017

int tan^3x dx = 1/2tan^2x +ln abs(cosx) + Ctan3xdx=12tan2x+ln|cosx|+C

Explanation:

Use the trigonometric identity:

tan^2x = sec^2x-1tan2x=sec2x1

to get:

int tan^3x dx = int (sec^2x -1) tanx dx= int tanxsec^2xdx -int tanx dxtan3xdx=(sec2x1)tanxdx=tanxsec2xdxtanxdx

Solve the first integral using: d(tanx) = sec^2xdxd(tanx)=sec2xdx

int tanx sec^2 dx = int tanx d(tanx) = 1/2tan^2x +C_1tanxsec2dx=tanxd(tanx)=12tan2x+C1

For the second integral:

int tanx dx = int sinx/cosx dx = - int (d(cosx))/cosx = -ln abs(cosx) + C_2tanxdx=sinxcosxdx=d(cosx)cosx=ln|cosx|+C2

Putting it together:

int tan^3x dx = 1/2tan^2x +ln abs(cosx) + Ctan3xdx=12tan2x+ln|cosx|+C