Use the trigonometric identity:
tan^2x = sec^2x-1tan2x=sec2x−1
to get:
int tan^3x dx = int (sec^2x -1) tanx dx= int tanxsec^2xdx -int tanx dx∫tan3xdx=∫(sec2x−1)tanxdx=∫tanxsec2xdx−∫tanxdx
Solve the first integral using: d(tanx) = sec^2xdxd(tanx)=sec2xdx
int tanx sec^2 dx = int tanx d(tanx) = 1/2tan^2x +C_1∫tanxsec2dx=∫tanxd(tanx)=12tan2x+C1
For the second integral:
int tanx dx = int sinx/cosx dx = - int (d(cosx))/cosx = -ln abs(cosx) + C_2∫tanxdx=∫sinxcosxdx=−∫d(cosx)cosx=−ln|cosx|+C2
Putting it together:
int tan^3x dx = 1/2tan^2x +ln abs(cosx) + C∫tan3xdx=12tan2x+ln|cosx|+C