Question #a2f4c

1 Answer
Oct 5, 2017

This list of integrals contains a reduction formula for

intsin^n(x)dx

we shall recursively use it.

Explanation:

The reduction formula is:

intsin^n(x)dx=(sin^(n-1)(x)cos(x))/n+(n-1)/nintsin^(n-2)(x)dx

Substituting 6 into the formula:

intsin^6(x)dx=(sin^5(x)cos(x))/6+5/6intsin^4(x)dx

Substituting 4 into the formula:

intsin^6(x)dx=(sin^5(x)cos(x))/6+5/6[(sin^3(x)cos(x))/4+3/4intsin^2(x)dx]

Substituting 2 into the formula:

intsin^6(x)dx=(sin^5(x)cos(x))/6+5/6[(sin^3(x)cos(x))/4+3/4{(sin(x)cos(x))/2+1/2intdx}]

We know the last integral:

intsin^6(x)dx=(sin^5(x)cos(x))/6+5/6[(sin^3(x)cos(x))/4+3/4{(sin(x)cos(x))/2+1/2x}] + C