What is int 2sec^2xtanxdx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Tom Nov 25, 2015 [tan^2(x)]+C Explanation: 2intsec^2(x)tan(x) dx t = tan(x) dt = sec^2(x)dx 2inttdt [t^2]+C And then substitute back Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 2075 views around the world You can reuse this answer Creative Commons License