What's the integral of int 1/(secx+tanx)dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer ali ergin Mar 6, 2016 int 1/(sec x+tan x)d x=l n(1+sin x) + C Explanation: int 1/(sec x+tan x)d x=(d x)/(1/cos x+sin x/cos x) int (cos x d x)/(1+sin x)" "1+sin x=u" "cos x d x=d u int (d u)/u int 1/(sec x+tan x)d x=l n u +C int 1/(sec x+tan x)d x=l n(1+sin x) + C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 17742 views around the world You can reuse this answer Creative Commons License