Write: cos4x=cos3x⋅cosx and integrate by parts:
∫cos4xdx=∫cos3xcosxdx=∫cos3xd(sinx)
∫cos4xdx=sinxcos3x−∫sinxd(cos3x)
∫cos4xdx=sinxcos3x+3∫sin2xcos2xdx
Now use the identity:
sin2x=1−cos2x
∫cos4xdx=sinxcos3x+3∫(1−cos2x)cos2xdx
∫cos4xdx=sinxcos3x+3∫cos2xdx−3∫cos4xdx
We have now the same integral on both sides and we can solve for it:
4∫cos4xdx=sinxcos3x+3∫cos2xdx
∫cos4xdx=sinxcos3x4+34∫cos2xdx
Using the same process:
∫cos2xdx=∫cosxd(sinx)=cosxsinx+∫sin2xdx
∫cos2xdx=∫cosxd(sinx)=cosxsinx+∫(1−cos2x)dx
∫cos2xdx=∫cosxd(sinx)=cosxsinx+x−∫cos2xdx
∫cos2xdx=cosxsinx2+x2
Substituting in the expression above:
∫cos4xdx=sinxcos3x4+38(cosxsinx)+38x