How do you find the integral of cos4(x)dx?

1 Answer
Feb 28, 2017

cos4xdx=sinxcos3x4+38(cosxsinx)+38x

Explanation:

Write: cos4x=cos3xcosx and integrate by parts:

cos4xdx=cos3xcosxdx=cos3xd(sinx)

cos4xdx=sinxcos3xsinxd(cos3x)

cos4xdx=sinxcos3x+3sin2xcos2xdx

Now use the identity:

sin2x=1cos2x

cos4xdx=sinxcos3x+3(1cos2x)cos2xdx

cos4xdx=sinxcos3x+3cos2xdx3cos4xdx

We have now the same integral on both sides and we can solve for it:

4cos4xdx=sinxcos3x+3cos2xdx

cos4xdx=sinxcos3x4+34cos2xdx

Using the same process:

cos2xdx=cosxd(sinx)=cosxsinx+sin2xdx

cos2xdx=cosxd(sinx)=cosxsinx+(1cos2x)dx

cos2xdx=cosxd(sinx)=cosxsinx+xcos2xdx

cos2xdx=cosxsinx2+x2

Substituting in the expression above:

cos4xdx=sinxcos3x4+38(cosxsinx)+38x