How do you find the integral of cotn(x) if is an integer?

1 Answer
Oct 12, 2015

See the explanation.

Explanation:

Let n=2k+1, then:

cotnxdx=cot2k+1xdx=(cot2x)kcotxdx=I

cot2x=t2cotx(csc2x)dx=dt

2cotx(1+cot2x)dx=dt

cotxdx=12dtt+1

I=12tkt+1dt

tkt+1=k1i=0(1)itki1+(1)kt+1

I=12(k1i=0(1)itki1+(1)kt+1)dt

I=12(k1i=0(1)itki1dt+(1)kdtt+1)

I=12(k1i=0(1)itkiki+(1)kln|t+1|)

I=12k1i=0(1)i(cot2x)kiki+(1)klncsc2x

Let n=2k, then:

cotnxdx=cot2kxdx=(cotx)2kdx=I

cotx=tcsc2xdx=dtdx=dtt2+1

I=t2kt2+1dt

t2kt2+1=k1i=0(1)it2(ki1)+(1)kt2+1

I=(k1i=0(1)it2(ki1)+(1)kt2+1)dt

I=(k1i=0(1)it2(ki1)dt+(1)kdtt2+1)

I=(k1i=0(1)it2(ki1)+12(ki1)+1+(1)karctant)

I=(k1i=0(1)i(cotx)2(ki)12(ki)1+(1)karctan(cotx))

I=(k1i=0(1)i(cotx)2(ki)12(ki)1+(1)k(xπ2))