How do you find the following indefinite integral of (x^(2)+sin(2x))dx(x2+sin(2x))dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Gió Aug 26, 2015 I found: x^3/3+sin^2(x)+cx33+sin2(x)+c Explanation: Consider: int(x^2+sin(2x))dx=∫(x2+sin(2x))dx= intx^2dx+intsin(2x)dx=∫x2dx+∫sin(2x)dx= =x^3/3+int2sin(x)cos(x)dx==x33+∫2sin(x)cos(x)dx= but d[sin(x)]=cos(x)dxd[sin(x)]=cos(x)dx; x^3/3+2intsin(x)d[sin(x)]=x^3/3+cancel(2)sin^2(x)/cancel(2)+c Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1493 views around the world You can reuse this answer Creative Commons License