What is the antiderivative of Cos(2x)Sin(x)dxcos(2x)sin(x)dx?
2 Answers
int \ cos(2x)sinx \ dx = 1/2cosx-1/6cos3x+ C
Explanation:
We use a little trick to express the integrand as the sum of multiple angles and then use the trig multiple angle formula:
2 sin A cos B = sin (A +B) + sin (A -B)
And we get;
int \ cos(2x)sinx \ dx = 1/2 \ int \ 2sinxcos(2x) \ dx
" "= 1/2 \ int \ sin(x+2x) + sin(x-2x) \ dx
" "= 1/2 \ int \ sin(3x) + sin(-x) \ dx
" "= 1/2 \ int \ sin(3x) - sin(x) \ dx
We can now easily integrate this:
int \ cos(2x)sinx \ dx = 1/2 \ (-1/3cos3x+cosx) + C
" "= 1/2cosx-1/6cos3x+ C