What is the antiderivative of Cos(2x)Sin(x)dxcos(2x)sin(x)dx?

2 Answers
Feb 6, 2017

intcos2xsinxdx=1/2int(2cos2xsinx)dxcos2xsinxdx=12(2cos2xsinx)dx
=1/2int{sin(2x+x)-sin(2x-x)}dx=12{sin(2x+x)sin(2xx)}dx
=1/2int(sin3x-sinx)dx=12(sin3xsinx)dx
=1/2{-cos(3x)/3-(-cosx)}=12{cos(3x)3(cosx)}
=-1/6(cos3x-3cosx)+C.=16(cos3x3cosx)+C.

Feb 6, 2017

int \ cos(2x)sinx \ dx = 1/2cosx-1/6cos3x+ C

Explanation:

We use a little trick to express the integrand as the sum of multiple angles and then use the trig multiple angle formula:

2 sin A cos B = sin (A +B) + sin (A -B)

And we get;

int \ cos(2x)sinx \ dx = 1/2 \ int \ 2sinxcos(2x) \ dx
" "= 1/2 \ int \ sin(x+2x) + sin(x-2x) \ dx
" "= 1/2 \ int \ sin(3x) + sin(-x) \ dx
" "= 1/2 \ int \ sin(3x) - sin(x) \ dx

We can now easily integrate this:

int \ cos(2x)sinx \ dx = 1/2 \ (-1/3cos3x+cosx) + C
" "= 1/2cosx-1/6cos3x+ C