How do you find ∫sin2(2x)cos3(2x)dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Cem Sentin Apr 13, 2018 (sin2x)36−(sin2x)510+C Explanation: ∫(sin2x)2⋅(cos2x)3⋅dx =∫(sin2x)2⋅(cos2x)2⋅cos2x⋅dx =∫(sin2x)2⋅(1−(sin2x)2)⋅cos2x⋅dx =12∫(sin2x)2⋅(1−(sin2x)2)⋅2cos2x⋅dx After using y=sin2x and dy=2cos2y⋅dy transforms, this integral became 12∫y2⋅(1−y2)⋅dy =12∫y2⋅dy−12∫y4⋅dy =y36−y510+C =(sin2x)36−(sin2x)510+C Answer link Related questions How do I evaluate the indefinite integral ∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral ∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral ∫cos5(x)dx ? How do I evaluate the indefinite integral ∫sin2(2t)dt ? How do I evaluate the indefinite integral ∫(1+cos(x))2dx ? How do I evaluate the indefinite integral ∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral ∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral ∫tan2(x)dx ? How do I evaluate the indefinite integral ∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral ∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 8024 views around the world You can reuse this answer Creative Commons License