How do you find sin2(2x)cos3(2x)dx?

1 Answer
Apr 13, 2018

(sin2x)36(sin2x)510+C

Explanation:

(sin2x)2(cos2x)3dx

=(sin2x)2(cos2x)2cos2xdx

=(sin2x)2(1(sin2x)2)cos2xdx

=12(sin2x)2(1(sin2x)2)2cos2xdx

After using y=sin2x and dy=2cos2ydy transforms, this integral became

12y2(1y2)dy

=12y2dy12y4dy

=y36y510+C

=(sin2x)36(sin2x)510+C