How do you find the integral of int sin x * tan x dxsinxtanxdx?

1 Answer
Mar 8, 2018

The answer is =ln(|tanx+secx|)-sinx+C=ln(|tanx+secx|)sinx+C

Explanation:

We need

tanx=sinx/cosxtanx=sinxcosx

intsecxdx=ln(tanx+secx)+Csecxdx=ln(tanx+secx)+C

Therefore,

intsinxtanxdx=intsecxsin^2xdx=intsecx(1-cos^2x)dxsinxtanxdx=secxsin2xdx=secx(1cos2x)dx

=int(secx-cosx)dx=(secxcosx)dx

=intsecxdx-intcosxdx=secxdxcosxdx

=ln(|tanx+secx|)-sinx+C=ln(|tanx+secx|)sinx+C