How do you find the integral of int sin x * tan x dx∫sinx⋅tanxdx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Narad T. Mar 8, 2018 The answer is =ln(|tanx+secx|)-sinx+C=ln(|tanx+secx|)−sinx+C Explanation: We need tanx=sinx/cosxtanx=sinxcosx intsecxdx=ln(tanx+secx)+C∫secxdx=ln(tanx+secx)+C Therefore, intsinxtanxdx=intsecxsin^2xdx=intsecx(1-cos^2x)dx∫sinxtanxdx=∫secxsin2xdx=∫secx(1−cos2x)dx =int(secx-cosx)dx=∫(secx−cosx)dx =intsecxdx-intcosxdx=∫secxdx−∫cosxdx =ln(|tanx+secx|)-sinx+C=ln(|tanx+secx|)−sinx+C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx∫cos5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt∫sin2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx∫(1+cos(x))2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx∫tan2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 63555 views around the world You can reuse this answer Creative Commons License