What's the integral of tanx(secx)32dx?

1 Answer
Nov 12, 2015

tanx(secx)32dx=23(secx)32+C

Explanation:

For this integral, we will use u substitution.
Let u=secx
then du=secxtanxdx

So we have
tanx(secx)32dx=(secx)12secxtanxdx=u12du

Applying the formula xndx=xn+1n+1+C we get

u12du=u3232+C=23u32+C

Finally, we substitute back in for u:

23u32+C=23(secx)32+C

Thus

tanx(secx)32dx=23(secx)32+C