What is int sin^3(12x)cos^2(12x) dxsin3(12x)cos2(12x)dx?

1 Answer
Nov 7, 2015

(3cos^5(12x)-5cos^3(12x))/180+ C3cos5(12x)5cos3(12x)180+C

Explanation:

Whenever you have sine and cosine functions in the integral, and the term inside terms are the same, its a good idea to check if you can use the identity;

sin^2x + cos^2x=1sin2x+cos2x=1

In this case, we can rearrange so that the expression reads;

sin^2(12x)=1-cos^2(12x)sin2(12x)=1cos2(12x)

Now we can rewrite the integral a little bit.

int sin^3(12x)cos^2(12x)dxsin3(12x)cos2(12x)dx

=int sin(12x)sin^2(12x)cos^2(12x)dx=sin(12x)sin2(12x)cos2(12x)dx

=int sin(12x)(1-cos^2(12x))cos^2(12x)dx=sin(12x)(1cos2(12x))cos2(12x)dx

At first glance, this looks messier, but now we can use substitution to make the integration easier.

Let u=cos(12x)u=cos(12x)

Using the chain rule gives us;

(du)/(dx) = -12sin(12x)dudx=12sin(12x)

-1/12 du = sin(12x)dx112du=sin(12x)dx

Now that we have expressions for uu and dudu, lets take another look at the intgral.

int color(green)sin(12x)color(red)((1-cos^2(12x))cos^2(12x))color(green)dxsin(12x)(1cos2(12x))cos2(12x)dx

We can make the dudu substitution for the green part, and the uu substitutions in the red part.

int -1/12(1-u^2)u^2du112(1u2)u2du

We can move the constant out of the integral, and multiply u^2u2 through the parenthesis, to get the integral;

-1/12 int u^2-u^4 du112u2u4du

Using the power rule, this integral is not so bad.

-1/12 (u^3/3-u^5/5) + C112(u33u55)+C

Multiply the -1/12112 through.

u^5/60-u^3/36 +Cu560u336+C

Now we can find a common denominator.

(3u^5-5u^3)/180 +C3u55u3180+C

Re-substituting for uu we get;

(3cos^5(12x)-5cos^3(12x))/180+ C3cos5(12x)5cos3(12x)180+C