Question #89694

1 Answer
Apr 14, 2017

int cosxsqrt(1+cos2x)dx =(x +sinxcosx)/sqrt2 + C

Explanation:

Use the trigonometric identity:

cos^2x = (1+cos2x)/2

so:

cosxsqrt(1+cos2x) = cosx sqrt(2cos^2x) =sqrt2cos^2x = (1+cos2x)/sqrt2

and:

int cosxsqrt(1+cos2x)dx = int (1+cos2x)/sqrt2dx

int cosxsqrt(1+cos2x)dx = 1/sqrt2 int dx +1/(2sqrt2) int cos2xd(2x)

int cosxsqrt(1+cos2x)dx = x/sqrt2 +(sin2x)/(2sqrt2) +C

int cosxsqrt(1+cos2x)dx =(x +sinxcosx)/sqrt2 + C