What is the antiderivative of x^2(sinx)dx?

1 Answer
Dec 29, 2016

Use integration by parts, twice.

Let u = x^2 and dv = sinxdx. Then du = 2xdx and v = -cosx.

int(udv) = uv - int(vdu)

int(x^2sinx) = -x^2cosx - int(-cosx * 2xdx)

int(x^2sinx) = -x^2cosx + 2int(xcosxdx)

Now, let u = x and dv = cosxdx. Then du = dx and v = sinx. Now, use integration by parts again.

int(x^2sinx) = -x^2cosx + 2(xsinx - int(sinx)) + C

int(x^2sinx) = -x^2cosx + 2xsinx + 2cosx + C

int(x^2sinx) = (2 - x^2)cosx + 2xsinx + C

Hopefully this helps!