How do you integrate csc^3xcsc3x?
1 Answer
Explanation:
We have:
I=intcsc^3xdxI=∫csc3xdx
We will use integration by parts. First, rewrite the integral as:
I=intcsc^2xcscxdxI=∫csc2xcscxdx
Since integration by parts takes the form
{(u=cscx" "=>" "du=-cotxcscxdx),(dv=csc^2xdx" "=>" "v=-cotx):}
Applying integration by parts:
I=-cotxcscx-intcot^2xcscxdx
Through the Pythagorean identity, write
I=-cotxcscx-int(csc^2x-1)(cscx)dx
I=-cotxcscx-intcsc^3xdx+intcscxdx
Note that
I=-cotxcscx-I-ln(abs(cotx+cscx))
Add the original integral
2I=-cotxcscx-ln(abs(cotx+cscx))
Solve for
I=(-cotxcscx-ln(abs(cotx+cscx)))/2+C