How do you integrate csc^3xcsc3x?

1 Answer
Aug 19, 2016

(-cotxcscx-ln(abs(cotx+cscx)))/2+Ccotxcscxln(|cotx+cscx|)2+C

Explanation:

We have:

I=intcsc^3xdxI=csc3xdx

We will use integration by parts. First, rewrite the integral as:

I=intcsc^2xcscxdxI=csc2xcscxdx

Since integration by parts takes the form intudv=uv-intvduudv=uvvdu, let:

{(u=cscx" "=>" "du=-cotxcscxdx),(dv=csc^2xdx" "=>" "v=-cotx):}

Applying integration by parts:

I=-cotxcscx-intcot^2xcscxdx

Through the Pythagorean identity, write cot^2x as csc^2x-1.

I=-cotxcscx-int(csc^2x-1)(cscx)dx

I=-cotxcscx-intcsc^3xdx+intcscxdx

Note that I=intcsc^3xdx and intcscxdx=-ln(abs(cotx+cscx)).

I=-cotxcscx-I-ln(abs(cotx+cscx))

Add the original integral I to both sides.

2I=-cotxcscx-ln(abs(cotx+cscx))

Solve for I and add the constant of integration:

I=(-cotxcscx-ln(abs(cotx+cscx)))/2+C