How do you find the antiderivative of (1+cosx)^2? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Konstantinos Michailidis Jun 8, 2016 We have that int (1+cosx)^2 dx=int (1+2*cosx+cos^2x)dx=int 1dx+2*int cosx+int cos^2x dx First we notice that cos^2 x=1/2(1+cos2x) Hence int (1+cosx)^2 dx=int (1+2*cosx+cos^2x)dx=int 1dx+2*int cosx+int cos^2xdx=x+2*sinx+x/2+1/4*sin2x+c Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 24039 views around the world You can reuse this answer Creative Commons License