How do you integrate int [(Sec(x))^5]dx?

1 Answer
Feb 14, 2018

int sec^5x dx = (2tanxsec^3x+ 3tanxsecx + 3ln abs(secx+tanx))/8 +C

Explanation:

Write the integrand as: sec^5(x) = sec^2(x) sec^3(x) and integrate by parts considering that:

d/dx (tanx) = sec^2(x) ,

so:

int sec^5x dx = int sec^2(x) sec^3(x)dx

int sec^5x dx = int sec^3(x)d(tanx)

int sec^5x dx = tanxsec^3x - int tanx d(sec^3(x))

and as:

d/dx (sec^3(x)) = 3sec^2(x) d/dx sec(x) = 3sec^3(x) tanx

we have:

int sec^5x dx = tanxsec^3x - 3int tan^2x sec^3x dx

use now the trigonometric identity:

tan^2 theta = sin^2 theta/cos^2 theta = (1-cos^2 theta)/cos^2theta = sec^2theta -1

to have:

int sec^5x dx = tanxsec^3x - 3int (sec^2x -1) sec^3x dx

and using the linearity of the integral:

int sec^5x dx = tanxsec^3x + 3int sec^3x dx -3 int sec^5x dx

The integral now appears on both sides of the equation and we can solve for it obtaining a reduction formula:

int sec^5x dx = 1/4(tanxsec^3x + 3int sec^3x dx)

Solve now the resulting integral with the same procedure:

int sec^3x dx = int secx d(tanx)

int sec^3x dx = tanxsecx - int tanx d(secx)

int sec^3x dx = tanxsecx - int tan^2x secx dx

int sec^3x dx = tanxsecx - int (sec^2x-1) secx dx

int sec^3x dx = tanxsecx + int secx dx - int sec^3x dx

int sec^3x dx = 1/2(tanxsecx + int secx dx)

To solve the resulting integral note that:

d/dx (tanx + secx) = sec^2x +secx tanx = secx(tanx+secx)

so dividing and multiplying the integrand by (secx+tanx):

int secx dx = int (secx(secx+tanx))/(secx+tanx) dx

int secx dx = int (d(secx+tanx))/(secx+tanx)

int secx dx = ln abs(secx+tanx) +C

Putting it all together:

int sec^5x dx = (2tanxsec^3x+ 3tanxsecx + 3ln abs(secx+tanx))/8 +C