How do you find the antiderivative of this equation e^(3x) - 4 cos x? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Massimiliano Apr 20, 2015 In this way: int(e^(3x)-4cosx)dx=1/3int3e^(3x)dx-4intcosxdx= =1/3e^(3x)-4sinx+c. Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1647 views around the world You can reuse this answer Creative Commons License